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Abstract

We suggest the use of hash functions to cut down the communication costs when counting
subgraphs under edge local differential privacy. While various algorithms exist for computing
graph statistics — including the count of subgraphs — under the edge local differential
privacy, many suffer with high communication costs, making them less efficient for large
graphs. Though data compression is a typical approach in differential privacy, its application
in local differential privacy requires a form of compression that every node can reproduce.
In our study, we introduce linear congruence hashing. Leveraging amplification by sub-
sampling, with a sampling size of s, our method can cut communication costs by a factor
of s2, albeit at the cost of increasing variance in the published graph statistic by a factor
of s. The experimental results indicate that, when matched for communication costs, our
method achieves a reduction in the ℓ2-error by up to 1000 times for triangle counts and by
up to 103 times for 4-cycles counts compared to the performance of leading algorithms.

1 Introduction

Differential privacy (Dwork, 2006; Dwork et al., 2014) has emerged as a benchmark for protecting user data.
To meet this standard, it is necessary to obfuscate the publication results. This can be achieved by adding
small noise (Dwork et al., 2006) or altering the publication outcomes with small probability (McSherry &
Talwar, 2007).

In differential privacy, it is typically assumed that there is a complete dataset available. After statistical
analyses are done, obfuscation is applied to the results. However, there can be leaks of user information
during the data collection or storage phases. To address these concerns, a variant of differential privacy,
termed local differential privacy (Cormode et al., 2018; Evfimievski et al., 2003), has been introduced. Here,
rather than starting with a full dataset, each user is prompted to disguise their data before sharing it. As
a result, the received dataset is not perfect. Numerous studies, like those referenced in Li et al. (2020);
Asi et al. (2022), have aimed to extract accurate statistical insights from these imperfect datasets. The
local differential privacy has been practically employed by several companies to guarantee the privacy of
their users’ information. Those companies include Apple, Microsoft, and Google (Differential Privacy Team,
Apple, 2017; Ding et al., 2017; Erlingsson et al., 2014).

Many studies on local differential privacy focus on tabular datasets, but there is also significant research
dedicated to publishing graph statistics (Sajadmanesh & Gatica-Perez, 2021; Ye et al., 2020). For graph-
based inputs, such as social networks, the prevalent privacy standard is edge local differential privacy (Qin
et al., 2017). In this framework, users are asked to share a disguised version of their adjacency vectors. These
vectors are bit sequences which show mutual connections within the network. For instance, in a social network
comprising n users, user vi would provide their adjacency vector, denoted as ai = [ai,1, . . . , ai,n] ∈ {0, 1}n.
Here, ai,j = 1 implies that users vi and vj are connected, while ai,j = 0 means there is no connection between
them.

One widely adopted method for obfuscation is the randomized response (Warner, 1965; Mangat, 1994; Wang
et al., 2016). In this approach, users are prompted to invert each bit in their adjacency vector, denoted
as ai,j , based on a specific probability. However, while the method is straightforward, its application to
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real-world social networks presents challenges. Typically, in practical social networks, an individual may
have at most a few thousand friends, implying that the majority of ai,j values are zeroes. When employing
the randomized response technique and flipping each bit of ai,j based on the designated probability, a
significant number of zero bits get inverted to one. This phenomenon can distort the resulting graph statistics
considerably (Mukherjee & Suppakitpaisarn, 2023; Mohamed et al., 2022).

Beyond the publication of full graphs via randomized response, there is a growing interest in subgraph
counting queries under local differential privacy. The challenge was first highlighted by Imola et al. (2021),
who proposed two key algorithms for k-star and triangle counting. Building on k-star counting, Hillebrand
et al. (2023) later introduced an unbiased and refined algorithm. For triangle counting, several notable
contributions include Imola et al. (2022a), which addressed the communication cost, Liu et al. (2022; 2024b),
which delved into scenarios where users have access to a 2-hop graph view, and Eden et al. (2023), which
studies the lower bound of the additive error. For larger subgraphs, He et al. (2024) gave a local differentially
private algorithm to count butterflies on bipartite graphs, Betzer et al. (2024) gave an algorithm to count
the number of walks under the privacy notion, Hillebrand et al. (2025) proposed an algorithm to count
odd-length cycles on degeneracy-bounded graphs, and Suppakitpaisarn et al. (2025) devised an algorithm to
count any graphlet of size k. Moving to the shuffle model, Imola et al. (2022b) gave algorithms for triangle
and 4-cycle counting. To conclude, Dhulipala et al. (2022) gave an approximation method for identifying
the densest subgraph, rooted in locally adjustable algorithms.

Most of the works mentioned in the previous paragraph use the two-step mechanism (Imola et al., 2021;
2022a;b). In this mechanism, users are required to download the adjacency vectors of all other participants.
They then compute graph statistics locally using their genuine adjacency vector and the obfuscated vectors
of their peers. Although this technique substantially increases the accuracy for various graph statistics,
such as the count of triangles, it comes with the drawback of demanding a vast amount of data download.
Each user incurs a communication cost of Θ(n2). Given that the user count, n, can reach several billion in
real-world scenarios, this download demand is not affordable for most.

Instead of using adjacency vectors, users might consider exchanging adjacency lists. This approach involves
each user transmitting and receiving only a list of adjacent node pairs. If we assume that a user can have
a limited, constant number of friends, then the bit-download requirement for the original graph becomes
Θ(n log n). However, given the surge in edge count to Θ(n2) due to the randomized response, the com-
munication cost associated with downloading the obfuscated adjacency list shoots up to Θ(n2 log n). This
means that, post-obfuscation, the adjacency list fails to offer any communication efficiency benefits over the
adjacency vector.

There are several techniques proposed to reduce the communication cost for the two-step mechanism such as
the asymmetric randomized response (Imola et al., 2022a), the degree-preserving randomized response (Hi-
dano & Murakami, 2024), the degree-preserving exponential mechanism (Adhikari et al., 2020), or technique
based on the compressive sensing (Li et al., 2011). However, we strongly believe that the communication
cost could be further reduced both in theory and practice.

1.1 Our Contributions

To mitigate the communication overhead, we suggest employing a compression technique on the adjacency
vector or list prior to its transmission to the central server.

The concept of database compression is not novel within the realm of differential privacy. Numerous mecha-
nisms have been developed to enhance the precision of statistics derived from tabular data through database
compression using sampling. One of the most prominent among these is the SmallDB algorithm (Blum et al.,
2013). There have also been initiatives that harness the Kronecker graph to refine the accuracy of published
graph statistics (Paul et al., 2020).

On the contrary, implementing database compression for the two-step mechanism under edge local differ-
ential privacy poses greater challenges. Imagine we compress the adjacency list [ai,1, . . . , ai,n]t down to
[ai,c1 , . . . , ai,cm ]t, with m ≪ n, via sampling, and then disseminate this compressed list to all users. When
other users utilize this compressed list for local calculations in the second step, they must be able to replicate
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Figure 1: Overview of our mechanism, GroupRR: the information within the green box represents the data
published by users

the sampling outcome. We therefore need a function which can be replicated with small communication cost.
This requirement inspired our proposition to utilize linear congruence hashing (Thomson, 1958; Rotenberg,
1960) for the sampling process.

Our proposal is outlined in Figure 1. Using linear congruence hashing, we can evenly partition the node set
{v1, . . . , vn} into m subsets. Let us denote these subsets as S1, . . . , Sm, each having a size of s. The index
ci, corresponding to the only value from the group sent to the server, is derived from Si with a uniform
probability of 1/s. Since all data is transmitted from the users with a probability of 1/s, we can leverage
the theorem on amplification by sub-sampling (Balle et al., 2018) to diminish the bit-flipping probability in
the randomized response mechanism by a factor of 1/s. Consequently, the count of non-zero entries in the
bit vector [ai,c1 , . . . , ai,cm

]t is roughly m/s, which is approximately equal to n/s2. By employing a sampling
size of s, the communication overhead can be reduced by a factor of s2.

While our publication’s variance might increase by up to a factor of s for certain graph statistics, our
experimental results demonstrate that, for a fixed download cost, our algorithm can reduce the ℓ2-error in
triangle counts by a factor of 1000.

A valid inquiry might be whether we would obtain a comparable outcome by deterministically choosing the
same disjoint sets S1, . . . , Sm for every user vi. While this approach could simplify the algorithm by elimi-
nating the need for hash functions, our findings indicate that deterministic set selection leads to a significant
variance in the estimations during the mechanism’s second step. Hence, using the linear congruence hashing
is vital for our compression.

The main contribution we present in the article is the first purely local differential private mechanism for
graph statistics that leverages amplification by sub-sampling. Additionally, we demonstrate the generality of
the mechanism and its efficiency as it performs better than state of the art by several orders of magnitudes
for several subgraph counting tasks.

1.2 Related Works

Hashing functions have been utilized in the domain of differential privacy by Wang et al. (2017) to develop
binary local hashing (BLH) and optimal local hashing (OLH) for frequency estimation under local differential
privacy. However, the work focuses on tabular information, while our work focuses on graph information.
The proposed algorithm is totally different because of the difference in data structure and privacy definition.
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Additionally, while the previous method use hash functions to compress user data, they do not support
amplification by sub-sampling, which is a feature of our proposed method. Thus, our compression rate is
larger than the previous work.

A recent study on communication reduction in local differential privacy (Liu et al., 2024a) successfully
simulated any randomizer for local differential privacy using only O(ε) communication bits. However, similar
to BLH and OLH methods, their approach depends on the characteristics of tabular data and traditional local
differential privacy, making it inapplicable to our scenario where edge-local differential privacy is employed.

2 Preliminaries

2.1 Hash functions

Hash functions (Knuth, 1997) map keys from a specified key space to a designated hash space. In this paper,
unless mentioned differently, the key space is represented by [|0, n− 1|] and the hash space by [|0, m− 1|].

We consider a hashing scheme called linear congruence hashing (Thomson, 1958; Rotenberg, 1960) in this
paper. The scheme can be defined as H = {ha,b|a ∈ [|1, p − 1|], b ∈ [|0, p − 1|]} when p is a prime number
greater than n and ha,b(x) = ((ax + b) mod p) mod m. Notice that, for all a, b and k ∈ [|0, m− 1|], we have⌊

n
m

⌋
≤ |{x : ha,b(x) = k}| ≤

⌈
n
m

⌉
. In other words, the number of key in a given bin is either

⌊
n
m

⌋
or
⌈

n
m

⌉
.

2.2 Edge Local Differential Privacy

Let the set of users be {v1, . . . , vn}. Each user vi has own adjacency list ai = [ai,1, . . . , ai,n]t ∈ {0, 1}n where
ai,j = 1 if {vi, vj} ∈ E and ai,j = 0 otherwise. For any ai, a′

i ∈ {0, 1}n, let d(ai, a′
i) be the ℓ1-distance

between the two vectors. To define the privacy notion, we first give the following definition:
Definition 1 (Local differentially private query). Let ϵ > 0. A randomized query R is said to be ϵ-edge
locally differentially private for node i if, for any pair of adjacency lists ai and a′

i where |ai − a′
i| ≤ 1, and

for any possible set of outcomes S, we have that

Pr[R(ai) ∈ S] ≤ eϵ Pr[R(a′
i) ∈ S].

Then, the definition of the edge local differential privacy is as follows:
Definition 2 (Edge local differential privacy Qin et al. (2017)). An algorithm A is defined as ϵ-edge locally
differentially private if, for any user i and for any possible set of queries R1, . . . ,Rκ which A posed to user
i, where each query Rj is ϵj-edge locally differentially private (for 1 ≤ j ≤ κ), the condition ϵ1 + · · ·+ ϵκ ≤ ϵ
is satisfied.

In this setting, ε represents the degree of privacy protection and is termed the privacy budget. A lower privacy
budget value indicates a stricter privacy limitation on published data. Each user possesses an adjacency list
denoted by ai. Before transmitting the result to the central server, they apply the randomized function R.
Subsequently, the central server aggregates this data using the aggregator A. According to Definition 2, if
a mechanism M is ε-edge differentially private, significant information of ai cannot be obtained from R(ai)
once it is transferred and stored on the central server.

One of the most important properties of the edge local differential privacy is the composition theorem.
Theorem 1 (Composition Theorem (Dwork et al., 2010)). Let M1, . . . ,Mp be edge local differentially
private mechanism with privacy budget ε1, . . . , εp. Then, the mechanismMp ◦ · · · ◦M1 is (ε1 + · · ·+εp)-edge
local differentially private.

2.3 Basic Mechanisms

Numerous mechanisms have been suggested to meet Definition 2 (Li et al., 2022; Hou et al., 2023). Among
them, the edge local Laplacian mechanism (Hillebrand et al., 2023) is an approach to offer privacy when we
request each user to give real numbers to the aggregator. The Laplacian mechanism can be defined as in the
following definition. It can be shown that the mechanism is ε-edge local differential private.
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Definition 3 (Edge Local Laplacian Mechanism (Hillebrand et al., 2023)). For f : {0, 1}n → R, the global
sensitivity of f is ∆f = max

d(a,a′)=1
∥f(a) − f(a′)∥1. For ε > 0, let X be a random variable drawn from

Lap(ε/∆f ). The edge local Laplacian mechanism for f with privacy budget ε is the mechanism for which
the randomized function R is defined as f(a) + X.

When we request users to send a vector of bits (such as the whole adjacency vector) to the aggregator, the
edge local Laplacian mechanism is not the most suitable. Instead, a frequently used method is the randomized
response (Warner, 1965; Mangat, 1994; Wang et al., 2016), as detailed in the following definition.

Definition 4 (Randomized Response (Warner, 1965; Mangat, 1994; Wang et al., 2016)). For ε > 0, the
randomized response with privacy budget ε is a mechanism which the randomized function R : {0, 1}n →
{0, 1}n is a function such that R(ai,1, . . . , ai,n) = (RR(ai,1), . . . , RR(ai,n)) where

P (RR(ai,j) = 1) =
{

eε

1+eε if ai,j = 1
1

1+eε if ai,j = 0.
(1)

2.4 Smooth Sensitivity (Nissim et al., 2007)

The traditional Laplacian mechanism adjusts noise based on the global sensitivity, which is determined from
the worst possible outcome for a selected function. It does not consider the specific adjacency list. Therefore,
in certain situations, the global sensitivity might be much greater than the function’s changes due to slight
update in the real adjacency list. Noticing this, Nissim et al. (2007) created a mechanism where the noise
relates to the smooth sensitivity, which varies depending on the instance. Before we define smooth sensitivity,
we first need to explain local sensitivity and sensitivity at a distance k.

Definition 5 (Local Sensitivity). For f : {0, 1}n → R, the local sensitivity of f on a ∈ {0, 1}n is LSf (a) =
max

a′:d(a,a′)=1
∥f(a)− f(a′)∥1.

The local sensitivity of f on {0, 1}n measures the largest change in f due to a single edge alteration when
starting with the adjacency list a. The sensitivity of f at distance k expands on this idea by looking at the
changes resulting from a single alteration in the adjacency lists that are within k modifications from a.

Definition 6 (Sensitivity at Distance k). For f : {0, 1}n → R, the sensitivity of f at distance k at a is
A(k)(a) = max

a′:d(a,a′)≤k
LSf (a′).

We are now ready to define the smooth sensitivity.

Definition 7 (Smooth Sensitivity). For f a function and β > 0, the β-smooth sensitivity of f at a is
S∗

f,β(a) = max
k

e−βkA(k)(a)

We are now ready to define the mechanism based on the smooth sensitivity. It is shown that the mechanism
is ε-edge local differential private.

Definition 8 (Smooth Sensitivity Mechanism). Let γ > 1 and h(z) be a probability distribution proportional
to 1/(1 + |z|γ). We will denote Zγ the random variable drawn from h. For ε > 0 and γ > 1, the smooth
sensitivity mechanism for f , denoted by M, is a mechanism with the randomized function R(a) = f(a) +
4γ
ε S∗

f,ε/γ(a) · Zγ .

This result was later improved in Yamamoto & Shibuya (2023) who proved that R(a) could be changed to
f(a) + 2(γ−1)

ε S∗
f,ε/2(γ−1)(a) · Zγ .

The mechanism operates effectively for all values of γ > 1. Nonetheless, it is important to highlight that
when γ ≤ 3, we do not know a way to calculate the variance of the random variable Zγ . Consequently, we
will adopt γ = 4 for this article, where the variance of Zγ is one.
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3 Previous Mechanism

Let us suppose the the original graph is G = (V, E) when V = {v1, . . . , vn} is a set of nodes or users and
E ⊆ {{u, v} : u, v ∈ V } is a set of edges or relationships. We can publish G using the randomized response
mechanism defined in the previous section. Given that a′

i,j = RR(ai,j) obtained from the randomized response,
we can define a graph G′ = (V, E′) with its adjacency matrix given by A′ = (a′

i,j)1≤i,j≤n. One can determine
the number of subgraphs in G′ by counting them; however, this method introduces a significant error (Imola
et al., 2022a). Specifically, the error magnitude is O

(
C4(G)

ε2 + n3

ε6

)
, which is large in relation to n and

becomes prohibitive as ε decreases, particularly when aiming for higher levels of privacy.

3.1 Two-Step Mechanism

To mitigate the error, Imola et al. (2021) introduced a two-step mechanism to release the count of triangles.
A tuple of three nodes, represented as (vi, vj , vk) where i > j > k is a triangle if {vi, vj}, {vi, vk}, {vj , vk} ∈ E.
We denote the set of triangles in G by ∆G. Furthermore, for tuples in ∆G where the initial element is vi,
we denote them as ∆i. We have that |∆G| =

∑
i

|∆i|.

The first step, represented by M1, involves releasing the obscured graph G′ = (V, E′) produced by the
randomized response. In the second step, represented by M2, every user vi provides an estimated value for
|∆i| that is based on both the real adjacency vector ai and the distorted graph G′. Let ∆′

i = {(vj , vk) :
{vi, vj}, {vi, vk} ∈ E, {vj , vk} ∈ E′, and i > j > k}. Consider a function f defined as f(ai) = |∆′

i|.
The randomized funtion of M2, represented as R2, aligns with what is used in the edge local Laplacian
mechanism. Specifically, users are asked to add a Laplacian noise into f(ai). The mechanism’s aggregator
then sums the outcomes derived from these randomized functions.

The two-step mechanism can significantly increase the precision of the triangle counting. However, it has a
large variance. Consider i > i′ > j > k such that {vi, vj}, {vi, vk}, {vi′ , vj}, {vi′ , vk} ∈ E and {vj , vk} /∈ E. If,
by the randomized response, {vj , vk} ∈ E′, that would contribute two to the number of triangles. When the
input graph has a large number of C4, the variance becomes large. The authors of Imola et al. (2022a) propose
a technique called four-cycle trick to reduce the variance. Define ∆′′

i := {(vj , vk) ∈ ∆′
i : {vi, vk} ∈ G′}.

Instead of having f(ai) = |∆′
i|, they use f(ai) = |∆′′

i |.

3.2 Communication Cost

In many real-world social networks, each user is typically connected to a constant number of other users
(Barabási, 2013). This means the number of connections (or ‘ones’ in the adjacency list ai) is a lot fewer
than n. So, instead of sending their entire adjacency list ai to the aggregator, user vi can just share the list
of those directly connected to them. This approach reduces the communication cost from n bits down to
Θ(log n).

However, when using randomized response mechanisms, every bit in ai has a constant probability of being
flipped. The resulting adjacency list a′

i will have roughly Θ(n) ones. So, the communication-saving technique
mentioned earlier will not work here.

The situation gets more difficult with the two-step mechanism discussed earlier. In this approach, each user
needs to access the entire distorted graph A′. The user vi cannot choose to access only the edge {vj , vk}
such that {vi, vj}, {vi, vk} ∈ E as that will reveal the existence of those two edges. This means they have to
download the whole distorted graph, which requires about Θ(n2) bits. Such a cost becomes unrealistic for
social networks with millions of nodes.

The four-cycle trick mentioned in the previous section can help reducing the communication cost. As a
triangle (vj , vk) ∈ ∆′′

i only if {vi, vk} ∈ E′, user vi can calculate |∆′′
i | without accessing the information

about whether {vj , vk} ∈ E′ or not when {vi, vk} /∈ E′. Still, we think that the savings from the trick are
not substantial enough to make the two-step method viable for big graphs.
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parameters of the hashing functions (Line 2 and 3 of Algorithm 2)

noisy degree (Line 2 of Algorithm 1)

aggregated obfuscated graph (Line 7 of Algorithm 2)

local unbiased count + noise (Line 5 of Algorithm 3)

U
se
r

Se
rv
erobfuscated edges (Line 7 of Algorithm 2)

noisy degrees of other users (Line 2 of Algorithm 1)

Figure 2: Details of the interactions between each user and the server during the execution of our mechanism

4 Our Mechanism: Group Randomized Response

In this section, we introduce a mechanism designed for publishing graphs in a distributed environment under
the edge local differential privacy. We have termed this approach the group randomized response (GroupRR).
The mechanism is a three-step process:

1. Degree Sharing Step: In this step, each user shares their degree protected by the local Laplacian
mechanism.

2. Group Randomized Response Step: In this step, a sampled adjacency list is published by
each user. First, nodes and edges are categorized into groups using the linear congruence hashing
function. Then, one value is sampled from each group and only this value is obfuscated and sent to
the central server.

3. Counting Step: Subgraphs are counted based on the information from the representatives. Then,
each user shares the number of subgraphs protected by the local Laplacian mechanism.

Figure 1 provides an overview of the various steps of the mechanism, while Figure 2 emphasizes the commu-
nication between users and the central server.

Thanks to the sampling created by the formation of groups, this mechanism achieves a notably reduced
communication cost. Moreover, the privacy budget amplification from sampling (Balle et al., 2018) fur-
ther decreases the probabilities of bit-flipping during the randomized response phase, further reducing the
communication cost.

4.1 Degree Sharing Step

During this step, each user vi calculates the count of their connections, specifically di = |{j < i : {i, j} ∈ E}|.
We call di as low degree in this paper. They then share the low degree using the local Laplacian mechanism
with the privacy budget of ε0. The shared count, denoted by d̃i, will be used only for adjusting bias in
the fourth step. If there are a lot of users (n is large), any errors from this count are minor even if a large
Laplacian noise is added. Thus, we can choose a relatively small value for ε0. This step is described as in
Algorithm 1.

4.2 Group Randomized Response Step

The goal of this step is to publish an obfuscated adjacency list in a communication efficient way. Our
solution is to form random groups of edges that are of similar sizes. It is crucial that this randomization can
be reproduced, and that the division is easily shareable among all participants. To achieve such a grouping
that meets these criteria, we employ the linear congruence hashing, which is discussed in Section 2. Once
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1 Function DegreeSharing
Input: Graph G = (V, E), privacy budget ε0
Output: Estimated degree d̃i of each user

2 [User i] Calculate and send d̃i ← di + Lap( 1
ε0

) to the central server
Algorithm 1: The first step of our proposed method, degree sharing step

that grouping is done, one value is sampled per group. This value is then obfuscated with the randomized
response mechanism and broadcasted. This step is described in Algorithm 2.

At Line 2 of the algorithm, the central server calculates p ∈ N, which represents the smallest prime number
greater than n, the graph’s size. Then, at Line 3, for each node vi when i ∈ [|1, n|], the server randomly
generates two values: θi from the range [|1, p − 1|] and ϕi from the range [|0, p − 1|]. These values act as
coefficients for the linear congruence hashing. After generating these coefficients, the server shares them,
along with p, with all users.

Recall the definition of ha,b in Section 2. Let s ∈ N∗ be a parameter called sampling size which will be the size
of each group, m be an integer such that m = ⌈p/s⌉, and let hi(j) = hθi,ϕi(j) = ((θi · j + ϕi) mod p) mod m.
At Line 4, each user vi classifies the set of users {v1, . . . , vn} into m disjoint groups, denoted by Si,1, . . . , Si,m.
The group Si,t can be defined as {vj : hi(j) = t}. By the property of the linear congruence hashing, we have
that s− 1 ≤ |Si,t| ≤ s. To make sure that all the sets have size s, we add a dummy element to all Si,t with
size s− 1. There is no edge between vi and the dummy node.

At Line 5, we then choose a representative for each group, Si,t. Every member of the group has an equal
probability of being selected, which is 1/s. Let us call the chosen member from group Si,t as vct

. When ct is
chosen from the group containing k, we will employ the notation ai,hi(k) := ai,ct

for convenience. Only the
value of the representative edge ai,ct is published via the randomized response mechanism, and the actual
selected index ct is not shared. We introduce this quantity only to simplify the description and analysis of
the algorithm.

It should be emphasized that even though the hashing coefficients are determined by the central server, this
does not pose a privacy risk. This is because the hashing functions are employed to form groups that are
intentionally public. The privacy-sensitive element is the representative value chosen for each group, and
the selection of these representatives does not involve the hash functions.

Each user then sends the values ai,c1 , . . . , ai,cm
to the aggregator using the randomized response mechanism

with a privacy budget of ε′ = ln(1 + s(eε1 −1)). It is noteworthy that this privacy budget, ε′, is considerably
greater than the ε1 budget used in the traditional method. This results in a much smaller probability of
flipping bits in the adjacency vector.

The obfuscated values sent from vi to the central system are denoted as a′
i,c1

, . . . , a′
i,cm

∈ {0, 1}. The
aggregator then releases these values, making them available for each user in the mechanism’s final step. In
the earlier approach, users had to know the list of vj such that a′

i,j = 1. Now, they only need to know the
list of t such that a′

i,ct
= 1. This significant reduces the number of bits users have to download from the

central server. We will conduct the analysis on the number of bits which each user needs to download in the
next section.

To ensure that each edge is published only once, each user only publishes connections with users who have a
smaller index than their own. To enforce this condition, in Line 6, we assign a′

i,ct
to zero when ct is greater

than i.

4.3 Counting Step

The final step of our method is outlined in Algorithm 3. In Lines 2-3, we update the value of a′
i,ct

to
ãi,ct = ωi · a′

i,ct
− σ̃i. In the next section, we will show that this adjustment effectively removes the bias in

our subgraph counting. We then use the value of ãi,ct to estimate the number of subgraphs associated with
each node. The calculation method varies depending on the specific subgraph. In Line 4 of the algorithm,
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1 Function GroupRandomizedResponse
Input: Graph G = (V, E), sampling size s, privacy budget ε1
Output: The grouped and obfuscated adjacency list (a′

i,c1
, . . . , a′

i,cm
) for each user

2 [Server] Calculate and broadcast p the smallest prime number larger than n
3 [Server] For all i ∈ [1, n], randomly select and broadcast (θi, ϕi) from [1, p− 1]× [0, p− 1]
4 [User i] Recall the definition of ha,b in Section 2. Let m be an integer such that m = ⌈p/s⌉, and let

hi(j) = hθi,ϕi(j) = ((θi · j + ϕi) mod p) mod m. For each t ∈ [1, m], Si,t ← {vj | hi(j) = t};
5 [User i] Choose randomly vct

from the set Si,t

6 [User i] For all t ∈ [1, m], if ct > i, ai,ct
← 0;

7 [User i] Perform the randomized response with privacy budget ε′ = ln(1 + s(eε1 − 1)) on
(ai,c1 , . . . , ai,cm

). The result (a′
i,c1

, . . . , a′
i,cm

) is then broadcasted to all users (We note that only
a′

i,ci
for all 1 ≤ i ≤ m is published. The index ci is not.);

Algorithm 2: The second step of our proposed method, group randomized response step

we detail the process for triangle counting. However, we can modify this line to calculate other graph
statistics. Following this, in Line 5, we apply either the local Laplacian mechanism or the smooth sensitivity
mechanism to obfuscate the result from Line 4 before sending it to the central server. At Line 6, the central
server aggregates the results received from all users and publishes the summation as the final counting result.

It is crucial to understand that we do not assume the degree di is public. Rather, we utilize an estimation
of di, referred to as d̃i, which is disclosed in the initial step of our mechanism, for the calculation of σ̃i at
Line 2 of the algorithm.

1 Function Counting
Input: Graph G = (V, E), grouped and obfuscated adjacency list (a′

i,c1
, . . . , a′

i,cm
), privacy budget

ε2, estimated degree d̃i of each user.
Output: The estimated number of triangles in the graph

2 [User i] Calculate σ̃ = s−1
ms−s d̃i + 1

eε′ −1
ms−1
m−1 , ωi = eε′

+1
eε′ −1 ·

ms−1
m−1 ;

3 [User i] For 1 ≤ t ≤ m, calculate ãi,ct
= ωi · a′

i,ct
− σ̃i ;

4 [User i] Let Wi := {(j, k) : j < k < i and {vi, vj}, {vi, vk} ∈ E}. Calculate |∆̃i| =
∑

(j,k)∈Wi

ãk,hk(j);

5 [User i] Obfuscate the value of |∆̃i| using the local Laclacian mechanism or the smooth sensitivity
mechanism with privacy budget ε2. Then, submit the result to the central server;

6 [Server] Publish the number of triangle as
∑

i |∆̃i|
Algorithm 3: The third step of our method, counting step, when it is used for publishing the number
of triangles

5 Theoretical Analysis of Our Mechanism

5.1 Privacy

We begin by analyzing the privacy guarantees of the group randomized response step (Step 2) in the following
lemma. This analysis leverages the amplification by subsampling technique (Balle et al., 2018), defined as
follows:

Lemma 1 (Amplification by Sub-Sampling under Edge Differential Privacy (Balle et al., 2018)). Let s > 0,
and define m = ⌈n/s⌉. Consider a randomized sampling function S : {0, 1}n → {0, 1}m such that, given
an input (a1, . . . , an) ∈ {0, 1}n, the output is S(a1, . . . , an) = (a′

1, . . . , a′
m), where each a′

i is determined as
follows:

9
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• For each 1 ≤ i < m, the output a′
i is sampled uniformly at random from the i-th block of size s, i.e.,

from indices {(i− 1)s + 1, . . . , is}. That is, for each j ∈ {(i− 1)s + 1, . . . , is}, we have a′
i = aj with

probability 1/s.

• For i = m, let the final block be {(m − 1)s + 1, . . . , n}, which may contain fewer than s elements.
Then, for each j ∈ {(m − 1)s + 1, . . . , n}, we have a′

m = aj with probability 1/s, and a′
m = 0 with

probability ms−n
s .

Let M be a randomized algorithm satisfying the following privacy guarantee: for all a, â ∈ {0, 1}n such that
|a− â| ≤ 1, and for all set S,

e−ε′
≤ Pr[M(a) ∈ S]

Pr[M(â) ∈ S] ≤ eε′
. (2)

Then, for the composed mechanism M◦ S, it holds that for all a, â ∈ {0, 1}n such that |a− â| ≤ 1, and for
all set S,

e−εs ≤ Pr[M(S(a)) ∈ S]
Pr[M(S(â)) ∈ S] ≤ eεs , (3)

where εs is given by εs = ln
(

1 + eε′
−1
s

)
.

The amplification by sub-sampling technique was originally proposed in the context of central differential
privacy, where each ai represents sensitive information of user i. It has not been previously applied to either
local differential privacy or graph statistics. The assumption in (2) requires that M satisfies ε′-differential
privacy, and the conclusion in (3) shows that the composed mechanism achieves εs-differential privacy due
to the sampling. To the best of our knowledge, we are the first to apply amplification by sub-sampling in
the setting of local differential privacy and graph statistics. We consider this application to be one of the
main contributions of our work.

The privacy guarantee of the group randomized response step (Step 2) of our algorithm follows from Lemma 1.
Lemma 2. The privacy budget of the group randomized response step is ε1.

Proof. We begin by observing that the computation of [ai,c1 , . . . , ai,cm
] in Lines 4–6 of Algorithm 2 can be

viewed as a sampling procedure S, as described in Lemma 1, followed by a reordering step, which does
not affect the privacy guarantees of the mechanism. The randomized response mechanism applied in Line 7
satisfies the privacy bound given in (2). Consequently, the overall procedure in Algorithm 2, which composes
sampling with randomized response, satisfies equation (3), thereby ensuring εs-edge local differential privacy
as defined in Definition 5. Substituting ε′ = ln(1 + s(eε1 − 1)) into the expression for εs = ln(1 + eε′

−1
s ), we

conclude that εs = ε1 and the privacy budget of the group randomized response step is ε1.

We provide the following example to illustrate how this amplification is achieved.
Example 1. Consider the publication of node ν0’s adjacency list using the group randomized response. We
will analyze two cases: (1) ν0 is connected to none of the n− 1 other nodes, and (2) ν0 is connected only to
ν1. Additionally, since the groups created by the hashing functions are public information and independent
of the private adjacency list, we assume that ν1 is in S0,t for both cases.

Let p1 and p2 represent the probabilities that a′
i,ct

= 1 in scenarios (1) and (2), respectively, when using the
randomized response mechanism with a privacy budget ε′. In case (1), ai,ct

is never equal to 1, as no nodes
are connected to ν0. By the property of randomized response, p1 = 1

1+eε′ . In case (2), ai,ct
is equal to 1 only

when ν1 is selected as the representative of group S0,t (note that this information is not disclosed). Thus,
ai,ct = 1 with probability 1

s . We have p2 = s−1
s ·

1
1+eε′ + 1

s ·
eε′

1+eε′ . We then derive that p2
p1

= 1 + 1
s ·
(

eε′ − 1
)

.
By setting ε1 such that ε′ = ln(1+s(eε1 −1)), we obtain p2

p1
= eε1 . This shows that we achieve ε1-differential

privacy, with ε1 ≈ ε′/s, demonstrating the privacy budget amplification.

The final result of our privacy analysis is shown in the following theorem:

10
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Theorem 2. The privacy budget of our mechanism is ε0 + ε1 + ε2.

Proof. We directly obtain this result from Lemma 2 and the composition theorem (Theorem 1).

5.2 Expected Value of ãi,ct

In the subsequent theorem, we discuss the expected value of ãi,ct . The theorem reveals that when an estimate
from the counting phase is a linear composition of ãi,ct

, it remains unbiased. The triangle count estimation
in Algorithm 3 is an example of these estimations.

In the following, we will restrict our analysis to the values of ãj,hj(k) where j > k. This does not pose any
limitation, as aj,k can always be estimated using either ãj,hj(k) or ãk,hk(j). Therefore, for the remainder of
this section, we will assume that j > k.

Recall that di denotes the number of connections between user vi and nodes with smaller indices, which we
refer to as the low degree of vi.

Define
pp,i := Pr[aj,hj(k) = 1 | aj,k = 1],

which evaluates to
pp,i = s− 1

s
· di − 1

ms− 1 + 1
s

.

Let
p′

p,i := Pr[a′
j,hj(k) = 1 | aj,k = 1],

which is given by the randomized response mechanism as

p′
p,i = eε′

1 + eε′ · pp,i + 1− pp,i

1 + eε′ .

Similarly, define
pa,i := Pr[aj,hj(k) = 1 | aj,k = 0] = s− 1

s
· di

ms− 1 ,

and let
p′

a,i := Pr[a′
j,hj(k) = 1 | aj,k = 0],

which satisfies
p′

a,i = eε′

1 + eε′ · pa,i + 1− pa,i

1 + eε′ .

In the next lemma, we show a property of ωi and σ̃i calculated in Algorithm 3. From now, denote E[σ̃i] by
σi.
Lemma 3. For all i, ωi = 1

p′
p,i

−p′
a,i

and σi = p′
a,i

p′
p,i

−p′
a,i

.

Proof. We have
1

p′
p,i − p′

a,i

= 1(
eε′ −1
eε′ +1

)
(pp,i − pa,i)

= 1(
eε′ −1
eε′ +1

)(
1
s −

s−1
s ·

1
ms−1

) .

Simplifying the expression gives

1
p′

p,i − p′
a,i

= eε′ + 1
eε′ − 1 ·

ms− 1
m− 1 =: ωi.

On the other hand, we obtain
p′

a,i

p′
p,i − p′

a,i

=
(

s− 1
ms− s

· di

)
+
(

1
eε′ − 1 ·

ms− 1
m− 1

)
=
(

s− 1
ms− s

· E[d̃i]
)

+
(

1
eε′ − 1 ·

ms− 1
m− 1

)
=: σi.

11
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We are now ready the proof the main theorem of this subsection.
Theorem 3. For all j, k ∈ {1, . . . , n}, the expected value of ãj,hj(k) equals aj,k.

Proof. When aj,k = 0, the expected value of ãj,hj(k) is given by

E
[
ãj,hj(k) | aj,k = 0

]
= (ωj − σj) · p′

a,j − σj · (1− p′
a,j) = ωj · p′

a,j − σj = 0.

Similarly, when aj,k = 1, we have

E
[
ãj,hj(k) | aj,k = 1

]
= (ωj − σj) · p′

p,j − σj · (1− p′
p,j) = ωj · p′

p,j − σj = 1.

5.3 Variance of ãi,ct

The previous section demonstrated that our mechanism gives no bias for certain specific publications. In
this subsection, we show that the variance of our mechanism is also quite minimal.

We use the following lemmas in the analysis.

Lemma 4. For any j, k, P
(

a′
j,hj(k) = 1

)
= aj,k+σj

ωj
.

Proof. We have
Pr
[
a′

j,hj(k) = 1 | aj,k = 0
]

= p′
a,j = σj

ωj
.

On the other hand,
Pr
[
a′

j,hj(k) = 1 | aj,k = 1
]

= p′
p,j = 1 + σj

ωj
.

In Lemma 2 and later, we work under the assumption that di < m ≈ n/s. This assumption is reasonable
for almost all social networks, where di typically remains constant, making this assumption applicable in
most cases. Additionally, given that the objective of this article is to mitigate the increase in communication
overhead caused by privacy measures, this assumption aligns well with our intended use-case. Notably,
should di exceed m, the communication cost associated with our method actually becomes lower than that
of the corresponding non-private algorithm.

Lemma 5. For all i such that di < m, ωi = O
(

s
eε1 −1

)
and σi = O

(
1

eε1 −1

)
.

Proof. From the relation ε′ = ln(1 + s(eε1 − 1)), it follows that

eε′
− 1 = s(eε1 − 1).

Therefore, we obtain
ωi = 2 + s(eε1 − 1)

s(eε1 − 1) · ms− 1
m− 1 = O

(
s

eε1 − 1

)
.

Moreover, under the assumption that di < m, we have

σi ≤
1

eε′ − 1 ·
ms− 1
m− 1 + 1 = 1

s(eε1 − 1) ·
ms− 1
m− 1 + 1 ≤ 1 + m

m− 1 ·
1

eε1 − 1 = O

(
1

eε1 − 1

)
.

We consider the variance of the variable ãj,hj(k) in the next theorem.

12
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Theorem 4. For all j such that dj < m, the variance of ãj,hj(k) is O
(

s
(eε1 −1)2 + s2

n2ε2
0

)
.

Proof. We begin by analyzing the variance of the binary variable a′
j,hj(k). Since it takes values in {0, 1}, we

apply Lemma 4 to obtain

Var
(

a′
j,hj(k)

)
= Pr

[
a′

j,hj(k) = 1
]
·
(

1− Pr
[
a′

j,hj(k) = 1
])

=
(

aj,k + σj

ωj

)
·
(

1− aj,k + σj

ωj

)
≤ 1 + σj

ωj
.

Next, using Lemma 5, we bound the variance of the estimator ãj,hj(k) as follows:

Var
(
ãj,hj(k)

)
= Var

(
ωja′

j,hj(k) + σ̃i

)
= ω2

j Var
(

a′
j,hj(k)

)
+ Var (σ̃i) ≤ ωj(1 + σj) +

(
s− 1

ms− s

)2
· 2

ε2
0

.

Therefore, we conclude that

Var
(
ãj,hj(k)

)
= O

(
s

(eε1 − 1)2 + s2

n2ε2
0

)
.

In Section 5.5, we will elaborate that ãj,hj(k) can cut the communication cost by a factor of s2 in contrast to
using the direct randomized response results a′

j,k. Given that the variance of a′
j,k is known to be Θ

(
1

(eϵ1 −1)2

)
,

the previous theorem suggests that, while we manage to decrease the communication cost by a factor of s2,
this is at the expense of amplifying the variance by a factor of s. In the upcoming section, we will demonstrate
that, for a set communication cost, this mechanism yields a considerably reduced variance.

5.4 Covariance of Variables

In situations where the goal is to sum up specific estimators, like in subgraph counting, a covariance emerges
between these estimators. The size of this covariance is addressed in the subsequent theorem.
Theorem 5. Assume di < m for all i. The covariance of the estimators ãj,hj(k) and ãj′,hj′ (k′) is in
O
(

s2

n(eε1 −1)2

)
when j = j′ and k, k′ < j. Otherwise, the covariance of the two estimators is zero.

Proof. When j ̸= j′, the two estimators are computed from disjoint sets of random variables and are therefore
independent.

When j = j′, the estimators ãj,hj(k) and ãj,hj(k′) are identical if k and k′ fall into the same bin, i.e.,
hj(k) = hj(k′). We denote this event by C

(j)
k,k′ , which occurs with probability

Pr
(

C
(j)
k,k′

)
= s− 1

ms− 1 .

As a result, for k, k′ < j,

Cov
(
ãj,hj(k), ãj,hj(k′)

)
= ω2

j · Cov
(

a′
j,hj(k), a′

j,hj(k′)

)
= ω2

j

(
E
[
a′

j,hj(k)a
′
j,hj(k′)

]
− E

[
a′

j,hj(k)

]
E
[
a′

j,hj(k′)

])
.

We consider the conditional expectations E
[
a′

j,hj(k)a
′
j,hj(k′) | C

(j)
k,k′

]
and E

[
a′

j,hj(k)a
′
j,hj(k′) | C

(j)
k,k′

]
.

Recall from the previous section that

Pr
[
aj,hj(k) = 1

]
= s− 1

s
· dj

ms− 1 + aj,k

(
1
s
− 1

ms− 1

)
.

13
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Multiplying both sides by ms−1
ms−2 yields

ms− 1
ms− 2 · Pr

[
aj,hj(k) = 1

]
= s− 1

s
· dj

ms− 2 + aj,k

(
ms− 1

s(ms− 2) −
1

ms− 2

)
≥ s− 1

s
· dj − aj,k

ms− 2 + aj,k

s
.

Let pk = Pr
[
aj,hj(k) = 1 | C(j)

k,k′

]
. Then,

pk = aj,k

s
+ s− 1

s
· dj − aj,k − aj,k′

ms− 2 ≤ ms− 1
ms− 2 · Pr

[
aj,hj(k) = 1

]
.

It follows that

Pr
[
a′

j,hj(k) = 1 and a′
j,hj(k′) = 1 | C(j)

k,k′

]
=
(

pk ·
eε′ − 1
eε′ + 1 + 1− pk

eε′ + 1

)
×

(
pk′ · eε′ − 1

eε′ + 1 + 1− pk′

eε′ + 1

)

≤
(

ms− 1
ms− 2

)2
E
[
a′

j,hj(k)

]
E
[
a′

j,hj(k′)

]
.

Hence, for s ≥ 3 (which is always satisfied in practice),

Pr
[
C

(j)
k,k′

]
· E
[
a′

j,hj(k)a
′
j,hj(k′) | C

(j)
k,k′

]
− E

[
a′

j,hj(k)

]
E
[
a′

j,hj(k′)

]
≤ 0.

Thus,
Cov

(
ãj,hj(k), ãj,hj(k′)

)
≤ ω2

j · E
[
a′

j,hj(k)a
′
j,hj(k′) | C

(j)
k,k′

]
· Pr

(
C

(j)
k,k′

)
.

Let p′
k = Pr

[
aj,hj(k) = 1 | C(j)

k,k′

]
. Then,

p′
k = aj,k + aj,k′

s
+ s− 2

s
· dj − aj,k − aj,k′

ms− 2 ≤ Pr
[
aj,hj(k) = 1

]
+ Pr

[
aj,hj(k′) = 1

]
.

It follows that
E
[
a′

j,hj(k)a
′
j,hj(k′) | C

(j)
k,k′

]
≤ E

[
a′

j,hj(k)

]
+ E

[
a′

j,hj(k′)

]
.

Using Lemma 4 and Pr
(

C
(j)
k,k′

)
= s−1

ms−1 , we obtain

Cov
(
ãj,hj(k), ãj,hj(k′)

)
≤ 2 · s− 1

ms− 1 · ωj(1 + σj) = O

(
s2

n(eε1 − 1)2

)
.

When s ≪ n, the covariance in the previous theorem is significantly smaller than the variance calculated
in Theorem 4. While the variance of the summation includes more covariance terms than variance terms,
we will demonstrate in the next section that the contribution from the covariance terms is not substantially
larger than the that of the variance terms in Theorem 4.

5.5 Communication Cost

The final aspect we will examine regarding the mechanism’s efficiency is the communication needed for graph
aggregation and distribution to each user. We will particularly look at two metrics: the “download cost”
(the average number of bits the server transmits to each user) and the “upload cost” (the average number of
bits each user sends to the server). Our analysis will offer approximate values under the assumption that the
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graph is sparse, meaning the number of edges (|E|) is much less than the square of the number of vertices
(|V |2).

From our discussion in the previous section, it is evident that the majority of the upload cost arises from
the randomized response step, while the download cost primarily stems from the counting step. Therefore,
in this analysis, we will disregard the costs associated with the other steps.

Theorem 6. The upload cost of user vi in our mechanism is O
((

di

s + n
s2(eε1 −1)

)
log n

s

)
.

Proof. Recall that, in the randomized response step, each user vi submits a binary vector [a′
i,c1

, . . . , a′
i,cm

] ∈
{0, 1}m, where m ≈ n/s. To reduce communication cost, the user may instead transmit only the index
set {t : a′

i,ct
= 1} ⊆ {1, . . . , m}. If ℓ entries in the vector are equal to one, the communication cost is

ℓ · log m ≈ ℓ · log(n/s).

We now analyze the expected value of ℓ. Since each ai,j is sampled into the vector with probability 1/s, and
noting that eε′ − 1 = s(eε1 − 1), we obtain:

E[ℓ] =
(

eε′

1 + eε′ · di + 1
1 + eε′ · (n− di)

)
· 1

s
≤ di

s
+ 1

s2(eε1 − 1) · (n− di) = O

(
di

s
+ n

s2(eε1 − 1)

)
.

Next, we consider the download cost for our mechanism.

Corollary 1. The download cost for all users is O
(

log n
s

(
|E|
s + n2

s2(eε1 −1)

))
.

Proof. Since each user must download information from all other users, the total download cost is

∑
i

O

(
log
(n

s

)(di

s
+ n

s2(eε1 − 1)

))
= O

(
log
(n

s

)( |E|
s

+ n2

s2(eε1 − 1)

))
,

where |E| =
∑

i di is the total number of edges.

When |E| = O(n), the upload cost is O
(

n
s2 log n

)
and the download cost is O

(
n2

s2 log n
)

. Recall that the com-
munication cost in the two-step mechanism is Θ(n2). Therefore, our technique reduces the communication
cost by a factor of s2.

6 Use Case: Triangle Counting

While our GroupRR mechanism is applicable to the counting of various subgraphs, the majority of prior
work—such as Imola et al. (2021; 2022a); Eden et al. (2023)—has focused specifically on triangle counting
under local differential privacy. To facilitate direct comparison with these existing approaches, we also focus
on triangle counting in this section.

In Subsection 6.1, we analyze the estimation loss introduced by our mechanism, excluding the effect of
Line 5 in the counting step of Algorithm 3, where noise is added via either the smooth sensitivity or local
Laplace mechanism. In Subsection 6.2, we propose an algorithmic refinement aimed at further reducing this
estimation loss for triangle counting. Finally, Subsections 6.3 and 6.4 are devoted to analyzing the noise
contribution introduced in the final step of the algorithm.

6.1 Sensitivity and Loss of Our Mechanism

In the counting step of our mechanism, each user vi estimates |∆i| when ∆i = {(vi, vj , vk) : k < j <
i, {vi, vj}, {vi, vk}, {vj , vk} ∈ E}. The number of triangles in the graph G, denoted by |∆G| is then the
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sum of all |∆i|. The estimation of |∆i| in our mechanism is |∆̃i| :=
∑

j,k:{i,j},{i,k}∈E

ãj,hj(k) added with the

Laplacian noise when the variable ãj,hj(k) is defined in the previous section. The variance of our mechanism
without the noise in the final step of our mechanism is shown in the subsequent theorem.
Theorem 7. Let S2, C4, and W4 denote the number of two-stars, four-cycles, and walks of length four in
the graph G, respectively. Then, the variance of the estimator

∑
i

∑
j,k:{i,j},{i,k}∈E

ãj,hj(k) is bounded by

O

(
s

(eε1 − 1)2 ·
(

S2 + C4 + s

n
·W4

))
.

Proof. The variance of the estimator
∑

i

∑
j,k:{i,j},{i,k}∈E

ãj,hj(k) can be decomposed into the following three

components:

1. Variance of individual terms: From Theorem 4, we have Var
(
ãj,hj(k)

)
= O

(
s

(eε1 −1)2

)
. As there

are S2 such terms (one for each two-star), the total contribution from the variances is

O

(
s · S2

(eε1 − 1)2

)
.

2. Covariance due to repeated terms: A term ãj,hj(k) may appear multiple times in the summation
if there exist i, i′ > j > k such that {i, j}, {i, k}, {i′, j}, {i′, k} ∈ E. Such configurations correspond
to four-cycles, of which there are at most C4. From Theorem 4, each such repeated term contributes
O
(

s
(eε1 −1)2

)
to the total covariance, yielding a contribution bounded by

O

(
s · C4

(eε1 − 1)2

)
.

3. Covariance between distinct terms: Dependencies may also arise between distinct terms ãj,hj(k)
and ãj,hj(k′) if there exist i > j, k and i′ > j, k′ such that the edge sets {i, j}, {i, k}, {i′, j}, {i′, k′} ∈
E. These configurations correspond to walks of length four involving shared center nodes. There
are at most W4 such configurations, and each contributes O

(
s2

n(eε1 −1)2

)
to the total covariance,

resulting in an overall contribution of

O

(
s2 ·W4

n(eε1 − 1)2

)
.

Combining all three components, we conclude that the total variance is

O

(
s

(eε1 − 1)2 ·
(

S2 + C4 + s

n
·W4

))
.

6.2 Further Optimization for Triangle Counting: Central Server Sampling

We believe that the variance detailed in Theorem 7 is comparatively minimal. Nevertheless, specifically for
triangle counting, this variance can be further reduced through a method we have termed “central server
sampling.” The specifics of this technique will be outlined in this subsection.
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6.2.1 Modification

Remember that through the GroupRR mechanism, the server acquires the set ξ̄i = {t | a′
i,ct

= 1} from user
vi following the group randomized response step. This set is then shared with all users at the start of the
counting step. As identified in the prior subsection, this approach not only leads to significant communication
costs but also contributes to a substantial covariance in triangle counting. To address these issues, we suggest
generating subsets ξ̄

(1)
i , . . . , ξ̄

(n)
i from ξ̄i independently, and then distributing the subset ξ̄

(j)
i to user vj . An

element t in ξ̄i is independently selected for inclusion in ξ̄
(j)
i with a constant probability, which we denote

as µc. The central server sampling is described in Algorithm 4.

1 Function CentralSampling
Input: For all user j, the grouped and obfuscated adjacency list (a′

j,c1
, . . . , a′

j,cm
) obtained from the

randomized response step, central server sampling probability µC

Output: For all user i, j, the grouped and obfuscated adjacency list for user j, which user i will use
for counting the number of triangles in the counting step, (a(i)

j,c1
. . . , a

(i)
j,cm

).
2 [Server] For each i, j, t, a

(i)
j,ct

= 0 if a′
j,ct

= 0. If a′
j,ct

= 1, a
(i)
j,ct

= 1 with probability µc, and a
(i)
j,ct

= 0
with probability 1− µc.;

3 [Server] Send (a(i)
j,c1

. . . , a
(i)
j,cm

) to user i.
Algorithm 4: Central Server Sampling: This process is executed between Step 3 and 4 of the GroupRR
mechanism

Let a
(i)
j,hj(k) ∈ {0, 1} is a random variable indicating if hj(k) ∈ ξ̄

(i)
j . The user vi believe that there is an edge

{vj , vk} in the graph G if a
(i)
j,hj(k) = 1. We have that E

[
a

(i)
j,hj(k)

]
= µc · E

[
a′

j,hj(k)

]
for all i, j, k.

Recall the variables ωi and σ̃i defined in the previous section. We define ã
(i)
j,hj(k) = ωi

µc
a

(i)
j,hj(k) − σ̃i.

Theorem 8. The variable ã
(i)
j,hj(k) is an unbiased estimation of aj,k.

Proof. By the definitions and Theorem 3, we have

E[ã(i)
j,hj(k)] = ωi

µc
· E[a(i)

j,hj(k)]− E[σ̃i] = ωi · E[a′
j,hj(k)]− E[σ̃i] = aj,k.

From the previous theorem, our unbiased estimation of the number of triangles under this modification is
then |∆̃i| =

∑
j,k:{vi,vj},{vi,vk}∈E

ã
(i)
j,hj(k) added by the Laplacian noise or the noise from the smooth sensitivity

mechanism.

6.2.2 Variance of the Modified Mechanism

We first consider the variance of ã
(i)
j,hj(k) in the subsequent theorem.

Theorem 9. Var
(

ã
(i)
j,hj(k)

)
= O

(
s

µc(eε1 −1)2 + s2

n2ε2
0

)
.

Proof. Since a
(i)
j,hj(k) is a binomial random variable, Lemma 4 implies

Var
(

a
(i)
j,hj(k)

)
= Pr

[
a

(i)
j,hj(k) = 1

]
·
(

1− Pr
[
a

(i)
j,hj(k) = 1

])
= µc · Pr

[
a′

j,hj(k) = 1
]
·
(

1− µc · Pr
[
a′

j,hj(k) = 1
])

≤ µc · Pr
[
a′

j,hj(k) = 1
]
≤ µc ·

1 + σj

ωj
.
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Then, by Lemma 5, we have

Var
(

ã
(i)
j,hj(k)

)
=

ω2
j

µ2
c

·Var
(

a
(i)
j,hj(k)

)
+ Var (σ̃i) ≤

1
µc
· 1 + σj

ωj
+ s2

n2ε2
0

.

Therefore,

Var
(

ã
(i)
j,hj(k)

)
= O

(
s

µc(eε1 − 1)2 + s2

n2ε2
0

)
.

At first glance, when contrasting this outcome with the findings in Theorem 4, it might appear that employ-
ing central server sampling amplifies the variance of the estimations, potentially diminishing their utility.
However, it is important to recognize that for a communication cost reduction by 1/µc times. Additionally,
in the same way as the four-cycle trick in Section 3, the central server sampling can reduce the covariance
stated in Theorem 7. In particular, it significantly reduces the covariance for the graph with a lot of walks
with length four (or graph with large number of W4).

Theorem 10. The covariance of ã
(i)
j,hj(k) and ã

(i′)
j′,h′

j
(k′) is O

(
s/(eε1 − 1)2) when j = j′, i ̸= i′ and k = k′,

O
(
s2/(n(eε1 − 1)2)

)
when j = j′, i ̸= i′ and k, k′ < j, and O

(
s2/(µcn(eε1 − 1)2)

)
when j = j′, i = i′ and

k, k′ < j. It is equal to zero in other cases.

Proof. When j ̸= j′, the two estimators are based on disjoint sets of variables, and the server sampling step
is conducted independently for each group. Therefore, the estimators are independent.

When j = j′, i ̸= i′, and k, k′ < j, the sampling steps for ã
(i)
j,hj(k) and ã

(i′)
j,hj(k′) are independent. Hence, by

Theorem 5,

Cov
(

ã
(i)
j,hj(k), ã

(i′)
j,hj(k′)

)
≤ Cov

(
ãj,hj(k), ãj,hj(k′)

)
= O

(
s2

n(eε1 − 1)2

)
.

Similarly, when j = j′, i ̸= i′, and k = k′, Theorem 4 gives

Cov
(

ã
(i)
j,hj(k), ã

(i′)
j,hj(k)

)
≤ Var

(
ãj,hj(k)

)
= O

(
s

(eε1 − 1)2

)
.

Next, consider the case when j = j′, i = i′, and k, k′ < j. We distinguish two subcases depending on whether
hj(k) = hj(k′). Let C

(j)
k,k′ denote the event that hj(k) = hj(k′). By Theorem 9,

E
[
ã

(i)
j,hj(k)ã

(i)
j,hj(k′) | C

(j)
k,k′

]
= Var

(
ã

(i)
j,hj(k)

)
= O

(
s

µc(eε1 − 1)2

)
.

In the case hj(k) ̸= hj(k′), we obtain from the proof of Theorem 5 that

P
(

C
(j)
k,k′

)
· E
[
a

(i)
j,hj(k)a

(i)
j,hj(k′) | C

(j)
k,k′

]
− E

[
a

(i)
j,hj(k)

]
E
[
a

(i)
j,hj(k′)

]
≤ 0.

Therefore,

Cov
(

ã
(i)
j,hj(k), ã

(i)
j,hj(k′)

)
≤ P

(
C

(j)
k,k′

)
· E
[
ã

(i)
j,hj(k)ã

(i)
j,hj(k′) | C

(j)
k,k′

]
= O

(
s2

µcn(eε1 − 1)2

)
.

Using the previous two theorems, we will quantify the variance of the triangle counting algorithm performed
using GroupRR and central server sampling. We describe in the next theorem this variance prior to the
addition of the Laplacian noise in the final step of the mechanism.
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Theorem 11. Let S2, S3, C4, and W4 be the number of two-star, three-star, four-cycle, and
the walk with length four in G. The variance of our estimator for triangle counting using

the GroupRR and central server sampling technique, denoted by
∑
i

( ∑
j,k:{vi,vj},{vi,vk}∈E

ã
(i)
j,hj(k)

)
, is

O
(

s
µc(eε1 −1)2

(
S2 + µcC4 + µcs

n W4 + s
n S3

))
.

Proof. The variance of

∑
i

 ∑
j,k:

{vi,vj},{vi,vk}∈E

ã
(i)
j,hj(k)


can be decomposed into four components:

1. Variance of individual terms:∑
i

∑
j,k:

{vi,vj},{vi,vk}∈E

Var
(

ã
(i)
j,hj(k)

)

By Theorem 9, we have

Var
(

ã
(i)
j,hj(k)

)
= O

(
s

µc(eε1 − 1)2

)
.

Since there are at most S2 such terms in total, the overall contribution is O
(

s·S2
µc(eε1 −1)2

)
.

2. Covariance from repeated index pairs {j, k}: This arises from the covariance between ã
(i)
j,hj(k)

and ã
(i′)
j,hj(k) for i, i′ > j > k such that {vi, vj}, {vi, vk}, {vi′ , vj}, and {vi′ , vk} are all in E. By

Theorem 10, the covariance is bounded by O
(

s
(eε1 −1)2

)
, and the number of such co-occurrences is

at most C4. Hence, this part contributes O
(

s·C4
(eε1 −1)2

)
.

3. Covariance across different i ̸= i′: This refers to terms ã
(i)
j,hj(k) and ã

(i′)
j,hj(k′) where i ̸= i′, and

there exist i > j, k and i′ > j, k′ such that {vi, vj}, {vi, vk}, {vi′ , vj}, {vi′ , vk′} ∈ E. Each such
occurrence contributes at most O

(
s2

n(eε1 −1)2

)
, and the total number of such cases is bounded by

W4, leading to a total contribution of O
(

s2·W4
n(eε1 −1)2

)
.

4. Covariance within the same i: This arises from pairs ã
(i)
j,hj(k) and ã

(i)
j,hj(k′) for fixed i and j, where

i > j and the edge set contains {vi, vj}, {vi, vk}, {vi, vk′} ∈ E. Each such pair contributes at most
O
(

s2

µcn(eε1 −1)2

)
, and there are at most S3 such cases, giving a total contribution of O

(
s2·S3

µcn(eε1 −1)2

)
.

Let us compare the variance derived from the GroupRR as outlined in Theorem 7 with that obtained from
GroupRR combined with central server sampling, as detailed in Theorem 11, particularly for graphs with
numerous walks of length four. In such scenarios, the term W4 becomes the dominant factor in the variances
of both methods. We find that the constant associated with this dominant term is identical in both variances.
This observation suggests that while achieving a similar level of variance, we can also reduce the download
cost by a factor of 1/µc.
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6.3 Smooth Sensitivity for Triangle Counting

We calculate the sensitivity at distance k (defined in Definition 6) for the triangle counting. First, let us
consider the local sensitivity (defined in Definition 5) for the adjacency vector a′ ∈ {0, 1}n (denoted by
LSf (a′)). As previously discussed, the maximum change in the count

∑
j,k:a′

j
=a′

k
=1

ã
(i)
j,hj(k) when one bit of a′

is updated is no more than

UBLS(a′) = max
j

 ∑
k:a′

k
=1

ã
(i)
j,hj(k) +

∑
k:a′

k
=1

ã
(i)
k,hk(j)

 .

When ai is the adjacent vector of user i and di is the number of ones in the vector, the number of ones in
the vector a with |a−ai| ≤ k is not more than UBLS(ai) + k ·ωi. Hence, the sensitivity at k of the vector ai,
denoted by A(k)(ai) is no more than O

(
UBLS(ai) + k·s

eε1 +1

)
. Combining with Theorem 11, we obtain that:

Theorem 12. When using the smooth sensitivity mechanism, the variance of our estimator is
O( 1

ε2
2

n∑
i=1

(
UBLS(ai) + s

ε2(eε1 +1)

)2
+ s

µc(eε1 −1)2

(
S2 + µcC4 + µcs

n W4 + s
n S3

)
).

6.4 Clipping for Triangle Counting

Although the smooth sensitivity mechanism discussed in the previous subsection provides accurate results,
calculating the sensitivity UBLS(ai) can be time-consuming in large networks. In such cases, we opt for the
local Laplacian mechanism (Definition 3).

Let f : {0, 1}n → R be defined as f(a′) =
∑

j,k:a′
j
=a′

k
=1

ã
(i)
j,hj(k), representing the value we intend to publish

for user i. Recall that the magnitude of the Laplacian noise added by the mechanism is determined by the
global sensitivity ∆f = max

a′,a′′:|a′−a′′|=1
(f(a′)− f(a′′)). Given that ã

(i)
j,hj(k) ≤ ωi, we find that ∆f ≤ n · ωi.

We can use n · ωi as the magnitude of the Laplacian noise. However, n · ωi is to large that the noise can
dominate the information we intend to publish. To have a better bound for the sensitivity, we employ
the ideas of double clipping in Imola et al. (2022a). Although we use some ideas from the paper, as our
mechanism is different from theirs, we attain a better sensitivity by a different mathematical analysis. Our
double counting algorithm is as follows:

1. Degree Clipping: Recall that d̃i is the estimation for the degree of vi published in the first step
of our mechanism. Let d̂i = d̃i + ε0 ln 2

β
1.

2. Noisy Triangle Clipping: Let Var represent the maximum variance of a single edge estimator, Cov
the maximum covariance between two edge estimators, and define bi = d̂i +

√
2
β (d̂i ·Var + d̂2

i · Cov).

Let |∆̃(j′)
i | =

∑
(j,k)∈Wi:j′∈{j,k}

ã
(i)
j,hj(k), where |∆̃(j′)

i | denotes the contribution of node j′ to |∆̃i|. During

the calculation of |∆̃i| in Line 4 of Algorithm 4, if there exists a j′ such that |∆̃(j′)
i | > bi, we select

a pair (j, k) ∈ Wi such that ã
(i)
j,hj(k) = ωi − σ̃i and update the value to 0. This process is repeated

until |∆̃(j′)
i | ≤ bi.

The clipping process described above ensures that the contribution of any edge (i, j′) to the publication of
|∆̃i| does not exceed bi ≪ n · ωi. As a result, the sensitivity of the publication of |∆̃i| is bi, allowing us to
set the Laplacian noise to this value.

1We notice that, in Imola et al. (2022a), edges are removed to match with d̂i if di > d̂i. However, that process can be
skipped, because we clip the sensitivity in the noisy triangle process anyway.
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While the clipping process allows us to have a smaller noise in the final step of our mechanism, the process
can incur bias to our publication. We give a theoretical result for this clipping technique in the following
theorem.
Theorem 13. The clipping process incur no bias with probability at least 1 − β. The variance of our
estimator by the clipping process is O(

∑
i

b2
i

ε2
2

+ s
µc(eε1 −1)2

(
S2 + µcC4 + µcs

n W4 + s
n S3

)
)

We use the following 2 lemmas in our analysis.
Lemma 6. The probability that we remove some edges in the degree clipping is smaller than β/2.

Proof. We remove edges when di > d̂i = d̃i + ε0 ln 2
β . This indicates that d̃i < di − ε0 ln 2

β , meaning the
magnitude of the Laplacian noise added during the degree-sharing step is greater than ε0 ln 2

β . This occurs
with a probability smaller than β/2.

While we consider the degree clipping in the previous lemma, we consider the noisy triangle clipping in the
subsequent lemma.

Lemma 7. The probability that we update some ã
(i)
j,hj(k) in the noisy triangle clipping is not greater than

β/2.

Proof. By the degree clipping and the definition of Wi, the number of terms in the summation∑
(j,k)∈Wi:j′∈{j,k}

ã
(i)
j,hj(k)

is at most d̂i. From Theorem 8, we have that

E[ã(i)
j,hj(k)] = aj,k ∈ {0, 1}.

Therefore,

E

 ∑
(j,k)∈Wi:j′∈{j,k}

ã
(i)
j,hj(k)

 ≤ d̂i.

Since the summation contains at most d̂i terms, its variance can be bounded by

Var

 ∑
(j,k)∈Wi:j′∈{j,k}

ã
(i)
j,hj(k)

 ≤ d̂i ·Var + d̂2
i · Cov .

Using the bounds on the expectation and variance, we conclude that

Pr
[
|∆̃(j′)

i | > bi

]
≤ β

2 .

We are now ready to prove Theorem 13.

Proof of Theorem 13. From Lemmas 6, 7, and union bound, we obtain that the clipping has no effect and
incur no bias with probability at most β/2. The variance of the Laplacian noise added by the node vi is
b2

i /ε2
2. Therefore, the final step of our mechanism increases the variance by

∑
i b2

i /ε2
2.
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In most practical cases, we have that bi = O

(
di·s√

β(eε1 −1)

)
. Based on that result, in all our experiments, the

failure probability β was set to 10−3.

One might wonder why we do not set the value of bi to max
j′
|∆̃(j′)

i |, as it is smaller than the value used in

the current clipping process. However, this is not feasible because max
j′
|∆̃(j′)

i | contains sensitive information,
and we cannot determine the noise parameter of our mechanism based on such private data.

In contrast, the variance and covariance required for the computation of the clipping parameter bi can be
computed using n, s, ε and di. With the exception of di, all those are public information. Concerning di, it
can be bounded with high probability by 0 and d̂i to obtain a bound on bi. Note that in the rare case that
di > d̂i, the clipping mechanism still guaranties the privacy protection.

7 Experiments

In this section, we assess our method, GroupRR, in comparison to the leading communication-constrained
graph publishing technique, ARR, as detailed in Imola et al. (2022a). As Imola et al. (2022a) has proven itself
to be a more accurate algorithm than the rest of the state of the art, we restrict ourself to the comparison
with this algorithm. We focus on the task of counting triangles in Subsection 7.1 and the task of counting
4-cycles in Subsection 7.2. All the code used for these experiments can be accessed at the following address
https://anonymous.4open.science/r/GroupRandomizedResponse-8F84/.

7.1 Triangle Counting

(a) Wikipedia Article Network

(b) Facebook

Figure 3: Comparative analysis of relative error between our algorithm and ARR across different download
and upload costs applied to the Wikipedia Article Network and the Facebook graphs, assuming a privacy
budget of ε = 1. The term ‘CSS’ in the legend stands for our central server sampling method
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In this subsection, we compare the triangle counting algorithm described in earlier sections with the leading-
edge algorithm named ARROne from Imola et al. (2022a)2. Among the various algorithms discussed in the
paper, our analysis focuses on the one that utilizes the 4-cycle trick, which has been shown to yield the
highest performance.

Our experiments primarily utilized the Wikipedia Article Networks dataset (Leskovec et al., 2010b;a), which
contains 7,115 nodes and 100,762 edges, and the Facebook dataset (Leskovec & Mcauley, 2012), which
contains 4,039 nodes and 88,234 edges. We chose these two graphs to illustrate two different types of
social networks. The Facebook graph represents a network with many clusters, while the Wikipedia graph
exemplifies networks centered around a few key nodes. Additionally, to prove that our methods scales to
larger graph, we also used the Google+ dataset (Leskovec & Mcauley, 2012) that is constructed from Google
circles. It contains 107,614 nodes and 13,673,453 edges.

To conduct experiments on graphs of different sizes from the original, we generated extracted graphs by
randomly selecting nodes to match the desired size and then examining the subgraph induced by these
nodes. We have verified that selecting random subgraphs does not alter the graph topology of either graphs
with respect to the subgraph counting problem.

The focus of our experiments is on assessing accuracy, measured by relative error, as we adjust various
parameters. These parameters include download cost, upload cost, graph size, and privacy budget. The
results presented are averages calculated from 10 separate simulation runs for each set of parameters. All
experiments are comparisons between the following three methods: (1) The leading-edge method detailed in
Imola et al. (2022a) (2) Our GroupRR mechanism enhanced by the central server sampling and the clipping
method (Subsection 6.4) (3) Our GroupRR mechanism enhanced by the central server sampling and the
smooth sensitivity (Subsection 6.3)

7.1.1 Error Analysis for Various Download Costs

Figure 3 illustrates that our algorithm outperforms the leading-edge algorithm across all download costs.
When the download cost is minimal, the enhancement in relative error can be as substantial as a 1000-fold
reduction.

As the cost of communication goes down, the difference in performance between our method and the one
described in Imola et al. (2022a) becomes more noticeable. Consider the reduction in download costs,
denoted by µ∗, which equals to µc/s2 for GroupRR with central server sampling. Setting s = (1/µ∗)1/3 and
µc = (µ∗)1/3, we observe that the S2 factor in the error, as discussed in Theorem 11, grows with (µ∗)−2/3,
while the C4 factor grows with (µ∗)−1/3. On the other hand, in the context of ARROne, where µ represents
the sampling rate of the mechanism, the reduction in download costs amounts to µ2. Here, the S2 factor
in the error term scales with 1/µ∗, and the C4 factor scales with 1/

√
µ∗. This scaling behavior highlights

that our algorithm proves more effective at lower communication costs compared to the method proposed in
Imola et al. (2022a).

When the download cost reaches its maximum — a scenario that occurs when no sampling is implemented
— our mechanism and the leading mechanism exhibit similar performance. This outcome is anticipated, as
in this scenario, both approaches essentially align with each other and with the classical local differential
privacy-based triangle counting algorithm, as described in Imola et al. (2021).

The experimental findings also reveal that, across all the download cost budgets we considered, the smooth
sensitivity method consistently outperforms the clipping method.

Figure 4 illustrates that the performance of our method compares to the state of the art becomes better as
the size of the graph increases. Indeed, as the download cost needs to be reduced by a larger factor to keep
the same communication, the gap in relative errors becomes bigger. For this experience we only used the
clipping version of our algorithm as smooth sensitivity is slow for large graphs.

2It is important to note, as mentioned in Appendix I of Imola et al. (2022a), that the original version of the algorithm
underestimates the sensitivity. Consequently, we have adjusted the sensitivity calculations used in our evaluations. Specifically,
in our modified version, the contribution of an edge (vi, vj) to the count by user vi is defined as |{k : ai,k = 1, {vj , vk} ∈
Mi, and k < i}| instead of |{k : ai,k = 1, {vj , vk} ∈ Mi, and j < k < i}|.
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Figure 4: Comparative analysis of relative error between our algorithm and ARR across different download
costs applied to the Google+ graph, assuming a privacy budget of ε = 1. The term ‘CSS’ in the legend
stands for our central server sampling method

7.1.2 Error Analysis for Upload Costs

Figure 3 demonstrates that our approach has enhanced the relative errors in counting across all ranges of
upload cost budgets. Notably, the smaller the budget, the more significant the improvement we observe.
For the lowest upload cost budget in this experiment, we have achieved an enhancement in relative error by
up to a factor of 1000. It is also evident that the smooth sensitivity method exhibits superior performance
compared to the clipping method in this context.

7.1.3 Error Analysis for Various Graph Sizes and Privacy Budgets

Figure 5 shows that our algorithm improves the current state-of-the-art across a wide array of parameters.
In these experiments, we tested various graph sizes and privacy budgets, observing similar trends for both
algorithms. Notably, even though the performance gap between the two algorithms appears to expand
as the privacy budget increases, the difference in performance consistently remains around three orders of
magnitude, irrespective of the graph size.

7.1.4 Runtime for Various Graph Sizes

Figure 6 presents the execution times for the state-of-the-art ARR algorithm, compared to two variants
of our GroupRR algorithm: one with clipping and another with smooth sensitivity, across different graph
sizes. The results indicate that GroupRR with smooth sensitivity incurs significantly longer execution times,
whereas GroupRR with clipping shows running times comparable to ARR. This discrepancy in performance
can be attributed to their asymptotic complexities: both ARR and GroupRR with clipping operate in
O (dmaxm), whereas the complexity for GroupRR with smooth sensitivity is O (nm). The graphs, plotted
on a logarithmic scale, do not form perfect straight lines, reflecting that in our model for generating graphs
of varying sizes, the average degree does not scale proportionally with graph size n.

This experiment demonstrates the balance between speed and accuracy required when choosing between our
two methods. GroupRR with clipping offers good accuracy with an execution time comparable to state-of-
the-art methods. Conversely, GroupRR with smooth sensitivity prioritizes accuracy but at the expense of
execution speed. This trade-off becomes particularly significant when dmax, the maximum degree, is small
relative to the number of users n.
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(a) Wikipedia Article Network

(b) Facebook

Figure 5: Comparing the relative error between our algorithm and the state-of-the-art approach (left plots)
across different graph sizes (n), derived from the Wikipedia Article Network and Facebook graphs with ε = 1
(right plots) under varying privacy budgets. In both experiments, we maintain a download reduction setting
of 1000. Note that in the legend, ‘CSS’ represents our central server sampling method.

7.2 4-cycles Counting

To validate the versatility of our framework, we extended our experiments to include counting cycles of
length 4, or 4-cycles, utilizing the same framework employed in our triangle counting methodology. This
method is described in Eden et al. (2023), Hillebrand et al. (2025) and Suppakitpaisarn et al. (2025). The
number of 4-cycles that include edges (i, i′) and (i, i′′) can be estimated by

∑
j ã(i′, j)ã(j, i′′) and the number

of 4-cycle that the node i participates in is given by
∑

i′,i′′:(i,i′),(i,i′′)∈E

∑
j ã(i′, j)ã(j, i′′).

Given the larger size of the subgraphs of interest, we opted to use smaller graphs for our experiments to
effectively manage complexity and computational demands. To establish the robustness and applicability of
our results, we conducted our 4-cycles counting experiments on two specific graphs. The first is the Twitter
Interaction Network for the US Congress (Fink et al., 2023), which represents Twitter interactions of the
117th United States Congress, comprising 475 nodes and 13,289 edges. The second graph is the email-Eu-
core network (Leskovec et al., 2007; Yin et al., 2017), derived from email interactions among members of a
major European research institution, containing 1005 nodes and 25,571 edges. These selections allow us to
provide substantive evidence of the generality of our findings across different types of networks.
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(a) Wikipedia Article Network (b) Facebook

Figure 6: Comparison on runtime between our algorithm and the leading edge algorithm for various graph
sizes generated from the Wikipedia Article Network and Facebook graphs with ε = 1 and a download cost
reduction of 1000. In the legend, the abbreviation ‘CSS’ denotes our central server sampling method.

We assessed accuracy using the ℓ2-error computed as

√
10∑

t=1
(x̂t − x)2, where x is the ground truth and x̂t is

the estimated value obtained in trial 1 ≤ t ≤ 10.

Figure 7: Comparison on ℓ2-error between our algorithm and ARR for various sampling factors on the
Twitter Interaction Network for the US Congress and the email-Eu-core network with ε = 1.

The experimental outcomes are displayed in Figure 7. It is evident that the error patterns are consistent
across both datasets. With either method, regardless of the sampling factor used, the error is greater in the
email-EU-core dataset. This aligns with expectations since the ℓ2-error is a property that tends to increase
with the graph’s size.

Nonetheless, the rate at which the discrepancy between the two methods grows is the same across both
datasets. When the full dataset is used—i.e., without any communication reduction—the performance of
ARR and GroupRR is comparable and aligns with that of the standard algorithm without communication
constraints (Imola et al., 2021). However, as shown in the graphs, under a sampling factor of 100, the
error associated with ARR increases by approximately a factor of 103 relative to GroupRR. According to
Theorem 4, the ℓ2-error in estimating a single edge scales linearly with the sampling factor s for GroupRR,
but quadratically (i.e., as s2) for ARR. Since each 4-cycle estimation involves two edge estimates, the overall
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ℓ2-error scales as s2 for GroupRR and as s4 for ARR. This implies a theoretical error gap of s2 = 104 between
the two methods. The observed reduction of this gap to 103 is attributed to the fact that, in the absence of
sampling, ARR achieves slightly better accuracy than GroupRR.

8 Conclusion

Our work introduces a private graph publishing mechanism that provides unbiased estimations of all graph
edges while maintaining low communication costs. The effectiveness of this method stems from integrating
two key components: the application of linear congruence hashing to achieve uniform edge partitions and the
amplification of budget efficiency through sampling within each group. This synergy leads to a significant
reduction in download costs, quantifiable as a factor of O(s3), where s represents the size of the groups.

We then demonstrated its utility in accurately estimating the count of triangles and 4-cycles. Furthermore, we
elaborated on the application of smooth sensitivity to these problems, ensuring that the resulting estimations
remain unbiased. Our experiments have demonstrated that these methods offer substantial improvements
in precision over existing state-of-the-art approaches for the countings.

Our future work is focused on enhancing the scalability of subgraph counting under local differential privacy.
We have observed that the computation time required for each user in all mechanisms proposed to date is
considerable. This computation time often increases for mechanisms involving multiple steps. Our aim is to
explore how sampling methods can not only improve precision but also significantly boost the scalability of
the counting process.
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